Part-task trainer evaluation of a head-mounted display for physically constrained anesthesiologists

D. Liu BEng(Hons)1, S. Jenkins BMBS FANZCA2, A. Kruys MBBS2, P.M. Sanderson, PhD FASSA1

1 The University of Queensland, Brisbane, Australia 2 Royal Adelaide Hospital, Adelaide, Australia

Aims

We evaluated a head-mounted display (HMD) of vital signs using a part-task trainer to determine whether it affects the speed with which anesthesiologists can detect clinical changes when performing physically constraining tasks.

Background

Anesthesiologists wearing an HMD can monitor the patient’s clinical signs and perform tasks while keeping the vital signs parameters within view at all times.

However, evaluations of monitoring with HMDs under less constrained, naturalistic operating room conditions reported no difference in event detections.

Methods

Twelve anesthesiologists navigated a maze on a Dexter® Endoscopic Dexterity Trainer using a fiber-optic bronchoscope in two 8-minute scenarios.

The anesthesiologists concurrently monitored a simulated patient’s vital signs using a monitor located directly behind them (Control condition).

Results

Two events were detected faster with the HMD: light anesthesia (p=0.034) and hypovolemia (p=0.019).

However, the excess sedation event was detected more slowly with the HMD (p<0.001).

There was no significant difference in detection times for the ischemia event, possibly because of the auditory cue from pulse oximetry.

Participants turned around to look at the standard patient monitor significantly less frequently in scenarios where the HMD was available (p<0.001).

Conclusions

The results indicate that HMDs can help anesthesiologists detect critical events faster when they are busy and physically constrained.

The slower detection of the excess sedation event with the HMD suggests that anesthesiologists may miss changes to waveforms displayed on HMDs.

Further research into the design and presentation of vital signs information on HMDs is warranted.