Simulator evaluation of head-mounted displays for patient monitoring

D. Liu 1, S. Jenkins 1, MBBS FANZCA 1, P.M. Sanderson, PhD FASSA 1, T. Leane, RN GDPH GDNursSci 2, M.O. Watson, PhD 1, W.J. Russell 1, MBBS DIC FANZCA FRCA 2
1 The University of Queensland, Brisbane, Australia 2 Royal Adelaide Hospital, Adelaide, Australia

Aims
We evaluated the effect of head mounted displays (HMDs) on anesthesiologist detection of unexpected, intraoperative events. We tested whether unexpected events are detected later or are more likely to be missed (1) with HMD plus standard monitoring vs. with standard monitoring alone and (2) with specific combinations of HMD depth of focus, ongoing task location and event location.

Background
Simulator studies have found that HMDs speed detection of dramatic incidents1, reduce the need for anesthesiologists to look back towards the monitor2, and lead to greater confidence of detecting events2. However, these studies have not investigated the potential disadvantages of HMDs reported in the aviation literature: reduced unexpected event detection3 and eye mis-accommodation4.

Methods
Twelve anesthesiologists from the Royal Adelaide Hospital provided anesthesia in a METI ECSI™ simulator with custom extensions5 while wearing a Microvision Nomad™ HMD. Participants experienced three 35-40 minute scenarios: standard monitoring (control condition), HMD with near focus, HMD with far focus. Eight events per scenario were constructed from combining distance of the anesthesiologist’s ongoing task (close, distant) with the location of the event (HMD, anesthesia machine, patient, elsewhere in the OR). Participants’ direction of gaze was coded from video data and the proportion of time spent looking towards either the patient or anesthesia machine was calculated. Differences in event detections and head turning were tested for significance using repeated measures ANOVAs with α=0.05.

Results
Neither HMD usage nor depth of focus affected event detection (p=0.664) or speed (p=0.769). However, event location had a significant effect on event detection (p=0.001) and speed (p=0.001). Participants using the HMD spent more time looking towards the patient and less towards the machine compared to using standard monitoring only (p=0.001). Differences between the near and far focus settings of the HMD were not significant, but 8/12 participants reported preferring the near over the far focus.

Conclusions
Event detection times were not reduced by the HMD as in prior studies1 but were affected by the location of events. We reproduced earlier findings that the HMD allowed participants’ to direct their visual attention towards the patient more often2. We did not reproduce the disadvantages of HMDs found in aviation5 and found no difference between near and far focus settings. Overall, in the simulated OR there was no clear benefit with the HMD, but also no evidence that deficiencies seen in aviation will occur.

References

Acknowledgements
This research is supported by Australian Research Council Discovery Project grant ARC DP0559504 to P. Sanderson, M. Watson, W.J. Russell. We thank Phil Cole, Tania Xiao, Dr Stas Krupenia, Lucas Tomczak, Daniel Host, Dylan Campber, Andrea Thompson, Mike Wren and Dr Norris Green for their help rehearsing and running the study.