Interruptions, distractions and situation awareness in advanced display studies

D. Liu, BEng(Hons)1, T. Grundgeiger, DiplPsych 1, P.M. Sanderson, PhD FASSA 1, T. Leane, RN GDPH GDNursSci 2, S. Jenkins, MBBS FANZCA 2

1 The University of Queensland, Brisbane, Australia 2 Royal Adelaide Hospital, Adelaide, Australia

Background

Advanced monitoring displays can help anesthesiologists detect clinical events faster and improve their situation awareness of the patient1. However, anesthesiologists must be aware of more than just the patient’s physiology. For example, if while monitoring the patient the anesthesiologist can detect errors made by other staff, then patient safety can be improved. Some displays help anesthesiologists perform multiple tasks better, but tests of handling multiple tasks are seldom part of display evaluations2. Recent research suggests that interruptions can make clinicians more prone to error3. We present an example of how anesthesiologists’ management of an interruption can affect their situation awareness of non-patient but clinically relevant events.

Methods

We manually reviewed video recordings of 12 anesthesiologist participants from the Royal Adelaide Hospital who were presented with a “failure to check blood” event in a simulator study of head-mounted displays3, illustrated below.

<table>
<thead>
<tr>
<th>Strategy</th>
<th>Number of participants</th>
<th>Detected</th>
<th>Missed</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interruption</td>
<td>0</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Multitasking</td>
<td>1 (late)</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Deferred Task</td>
<td>4</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Blocking</td>
<td>5</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>

Results

As the far right table shows, the only two participants who missed the event both immediately agreed to organise an HDU transfer and then became engaged in doing so (Interruption). One participant initially missed the event because he was organising the HDU transfer and directing the nurse to apply a pressure bag (Multitasking) and he only detected the event later after the transfer was complete. Four participants immediately agreed to the transfer, either performed or delegated the blood check, and then organised the HDU transfer (Deferred Task). The remaining five participants provided justifications for denying the surgeon’s request and closed the conversation (Blocking).

Conclusions

Anesthesiologists’ strategies for responding to interruptions and handling multiple tasks can directly affect their detection of clinically relevant events. Few studies of the impact of advanced displays have manipulated multitasking, interruptions and distractions4 but effective displays should mitigate the effects of interruptions. Overall, broader test scenarios are needed to determine whether a display will affect anesthesiologists’ awareness of safety-critical but non-physiological events in the operating room.

References

Acknowledgements

This research is supported by Australian Research Council Discovery Project Grant ARC DP055004 to P. Sanderson, M. Watson, and W. J. Russell. T. Grundgeiger is supported by the National Health and Medical Research Council (NHMRC) Center of Research Excellence in Patient Safety.