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Abstract. The design, development, and use of complex systems models raises 

a unique class of challenges and potential pitfalls, many of which are com-

monly recurring problems.  Over time, researchers gain experience in this form 

of modeling, choosing algorithms, techniques, and frameworks that improve the 

quality, confidence level, and speed of development of their models.  This in-

creasing collective experience of complex systems modellers is a resource that 

should be captured.  Fields such as software engineering and architecture have 

benefited from the development of generic solutions to recurring problems, 

called patterns.  Using pattern development techniques from these fields, in-

sights from communities such as learning and information processing, data 

mining, bioinformatics, and agent-based modeling can be identified and cap-

tured.  Collections of such ‘pattern languages’ would allow knowledge gained 

through experience to be readily accessible to less-experienced practitioners 

and to other domains.  This paper proposes a methodology for capturing the 

wisdom of computational modelers by introducing example visualization pat-

terns, and a pattern classification system for analyzing the relationship between 

micro and macro behaviour in complex systems models. We anticipate that a 

new field of complex systems patterns will provide an invaluable resource for 

both practicing and future generations of modelers. 

1. Introduction 

While complex systems models are used by a wide variety of often experienced re-

search groups, the development of such models is far from an exact science.  The de-

sign of model architecture and algorithms, the choice of hardware and software infra-

structure, and methods for tracking and analyzing results, are just some of the 

problems often faced and often re-solved.  While each research project and each 

simulation within it is unique, there are many underlying commonalities which, once 

identified, can save much ‘reinvention of the wheel’. 

Established fields such as architecture [1] and software engineering [2] have cap-

tured much of the experience gained by their respected practitioners.  These rules of 

thumb are known as patterns in architecture and software engineering (e.g. design 

patterns [3],  process patterns [4]). They record both commonly-recurring problems, 

pertaining to any aspect of the work from global structure to specific detail, and their 
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proven solutions.  Libraries of such patterns are more than just collections of a field’s 

heuristics. The context in which a solution is appropriate plays a critical part in the 

description of a pattern. Context is a recognized part of the background knowledge of 

any field, although in most areas it is rarely described as an integral part of a heuristic. 

For the field of machine learning, it is well known that no search technique will be 

optimal for all tasks, frequently expressed as ‘no free lunch’, however it is still rare 

for a new algorithm to be presented with an assessment of the tasks in which it is in-

appropriate. It is important to know in which contexts a heuristic is effective, and the 

consequences of their use, such as tradeoffs between accuracy versus time. 

Capturing commonly-recurring problems, their contexts and consequences has had 

multiple benefits for software engineering and architecture.  First, both beginning and 

experienced practitioners benefit from a rapidly accessible library of tested ideas, in-

formation about the situations where they should be used and the consequences or 

tradeoffs of their use.  Second, an appropriate and tested format (building on 40 years 

of patterns research in a variety of fields) facilitates the ongoing community devel-

opment of the library. This format provides a shared language of tools and methods 

agreed upon by the community, enabling rapid communication. Third, capturing the 

wisdom of the field in a practical and effective resource builds confidence in the qual-

ity of systems produced. 

The field of complex systems currently lacks this library of experience. Shared li-

braries of algorithms and heuristics exist but they lack the experience of the complex 

systems modeler in when to apply them. 

Using the patterns approach to capture experience in the field of complex systems 

modeling would provide a further benefit.  The complex systems community is a 

unique collection of researchers from many disparate backgrounds (such as machine 

learning, complex adaptive systems, neural networks, gene expression analysis, multi-

agent systems, etc.).  However, the fundamental issues studied are common to all, 

such as the emergence of macro-level behaviour from micro-level interactions.  In-

sights from one branch of complex systems science can often be applied to another 

when taken at an appropriate level of abstraction.  Patterns can be used to capture 

knowledge unique to one branch of the field and effectively communicate these in-

sights to other areas. 

2. Software Patterns 

The software engineering field has had decades of experience developing, maintain-

ing and using complicated systems, advancing techniques such as problem decompo-

sition, verification, validation and project management.  Software engineering pro-

vides extensive experience in pattern development, with patterns spanning the 

problem space from global architecture to detailed programming language specific 

idioms.  More than a heuristic or data structure, a pattern is the solution to a problem 

in a specific context, balancing inherent tradeoffs [5].  Software engineering patterns 

have defined characteristics including name, intent, motivation, consequences, known 

uses, and related patterns [2] (see Section 4). 

A good software engineering pattern has the following key characteristics [6]: 



• solves a particular problem (not just in principle); 

• is a proven solution that has been successfully employed in at least three sig-

nificant scenarios; and 

• has a significant human component describing how and when it is useful. 

 

In terms of the patterns development process, the following characteristics have be-

come accepted in the software engineering community [6]: 

• a strong focus on proven solutions to recurring problems; 

• those writing patterns do not have to be the original inventor of the solution; 
• non-anonymous review, where discussions focus on how patterns should be 

clarified or improved upon; 

• development through discussions in workshops instead of solo presentations; 

and 

• careful editing, through which the pattern authors can incorporate feedback 
gained through workshops and review before presenting the patterns in their 

final form. 

 

These characteristics provide a useful guide for the development of patterns in com-

plex systems science. 

3. Complex Systems Patterns 

As in software engineering, the field of complex systems consists of practitioners ex-

perienced with a wide range of solutions to common problems.  Modeling techniques 

and implementation frameworks, methods of analysis and visualization, and the most 

effective ways of reporting results, are just some of the techniques that form the col-

lective experience of the field.  We propose that one of the most effective methods to 

capture and communicate complex systems knowledge is the proven technique of pat-

tern development from software design. 

Patterns from the complex systems community can be grouped into two classes.  

The first is collections of proven solutions to commonly recurring problems that occur 

in the development and use of complex systems models.  Examples in this class of 

patterns include hardware and software platforms, model architectures and abstrac-

tions, and analysis and visualization techniques.  The second source of potential pat-

terns are the insights generated by the complex systems models themselves.  Emer-

gent robustness, evolvability, efficient connectivity, and modular design are some of 

the characteristics found in complex systems that can inform the development of solu-

tions to certain problems, and communicate insights from one class of models, such as 

agent-based systems, to another, such as genetic regulatory networks. 

Initial places to search for such classes of patterns include the visualization of net-

work structure and dynamics such as expression patterns [7], [8], metrics for connec-

tivity, diameter, and cluster coherency of networks [9], [10], and micro and macro 

scale, temporal and spatial structures [11], [12]. 

Patterns vary in their level of abstraction and granularity, and consequently there 

needs to be a way to classify them [2].  The micro and macro level characteristics of 



complex systems models can be at the level of structure, dynamics, or function.  The 

structural level focuses on the static relationships between model entities, for exam-

ple, a network of agent relationships or gene connectivity.  The dynamic level is con-

cerned with the interactions between these components, for example, a diagram of 

gene activations or the state space.  The functional level focuses on the entire complex 

system functioning within an environment (e.g., a phenotype based on underlying 

component interactions placed within an evolutionary algorithm).  A preliminary set 

of complex systems patterns, useful for modeling Boolean networks, and their classi-

fications, is summarized in Table 1. 

Table 1. Examples of visualizations that can inform development and use of Boolean network 

models 

Targeted Complex Systems Features 

Pattern Structure Dynamics Function 
Micro 

Mechanics 

Macro 

Behaviours 
...... 

Network Diagram �   �   

Activation Diagram  �  � �  

State Space Diagram  �   �  

......       

4. Example Patterns 

Consistent with best practice, refinements can be found at 

http://www.itee.uq.edu.au/~patterns/repository/ 

 

 

4.1 Activation Diagram 
 

One commonly-recurring problem in genetic regulatory network modeling is the 

visualization of system behaviour, where interesting behaviours span multiple levels 

in time and space.  To provide a concrete feel for the nature and scope of a complex 

system pattern, this section illustrates a prototype pattern which solves this problem. 

 

Name: Activation Diagram (Classification: Dynamics, Micro-Mechanics, Macro Be-

haviours) 

 

Intent: Visualize micro level activation of components over time to see macro level 

characteristics. 

 



Also known as: Gene expression diagram, gene activation diagram, expression pat-

tern, activation signature 

 

Motivation:  Understanding the effects over time of interactions between large num-

bers of nodes in a network can be difficult and time-consuming.  Inferring macro-

level classes of behaviour is easiest when the history of system-wide activations are 

presented as a single diagram.  The idea of this pattern is to provide a visualization of 

node histories for a single initial condition, allowing macro-level features such as sta-

ble, cyclic, or chaotic behaviour to be identified, and characteristics such as 

the length of transient periods to be measured. 

 

Applicability: Use the Activation Diagram pattern when you want to: 

• visualize the characteristics of component activations over time when compo-

nents have binary or real-valued states; 

• visualize characteristics of macro level behaviour such as ordered, cyclic, or 

chaotic activity; 

• visualize both the initial transient dynamics and the longer term behaviour; 

• assess the life cycle of macro level behaviours (such as the number of steps be-

fore a network settles into a certain state); or 

• (variation) manually investigate robustness of macro-level behaviour 

 

Example Visualization: 

 

Fig. 1. Activation diagram.  Time is shown along the x axis, and each component is positioned 

along the y axis.  Active components are denoted by dark shading.  This diagram shows the 

component activations falling into a cyclic state after a short transient period. 

 



Consequences: The Activation Diagram has the following consequences and inherent 

limitations: 

• it provides a clean visualization of the dynamics from a single starting state but 

the inherent limitation is that only a single starting state and trajectory is shown 

per diagram; 

• it requires access to the values of all components for each time step; 

• large numbers of components can make viewing difficult; 

• very long cycles can appear similar to chaotic trajectories; 

• the two-dimensional representation maps time into space, consequently spatial 

information is lost (e.g., in random Boolean networks, neural networks); this can 

be mitigated by using the Activation Diagram pattern together with the Network 

Diagram pattern; and 

• spatial information is preserved if a one-dimensional representation is used (e.g., 

cellular automata) 

 

Implementation: The Activation Diagram has the following important implementa-

tion variations: 

• time can be expressed along the x or y axis; and 

• one-dimensional interactions (e.g., cellular automata) can be visualized by or-

dering nodes according to their interactions 

 

Known uses: Gene expression [13], random Boolean networks, cellular automata, 

neural network dynamics. 

 

Related patterns: State Space Diagram, Network Diagram 

 

Sample Code:  

This example visualizes the expression pattern of a Boolean network of gene regula-

tion.  A C++ source code listing is available at 

http://www.itee.uq.edu.au/~patterns/repository/activation-diagram.html 

 
e = expression data, indexed by [step number][gene nu mber] 
s = number of steps in e 
g = number of genes in e 
 
if ( s > 0) and ( g > 0): 
 clear the screen 
 xdist = screen-width / s 
 ydist = screen-height / g 
 xgap = 0.12 * xdist 
 ygap = 0.12 * ydist 
 
 x = 0  /* where 0 is leftmost screen coordinate */ 
 for i = 1 to s: 
  y = 0  /* where 0 is topmost screen coordinate */ 
  for j = 1 to g: 
   if expression_data[i][j] is activated: 
    x1 = x + xgap 
    y1 = y + ygap 
    x2 = x + xdist – xgap 
    y2 = y + ydist – ygap 
    draw_rectangle( x1, y1, x2, y2) 
   y = y + ydist 
  x = x + xdist 



4.2 Network Diagram 
 

Name and Classification: Network Diagram (Structure, Micro Mechanics) 

 

Intent: Visualize micro-level interactions of components at a given point in time 

 

Also Known As: Graph 

 

Motivation: Understanding the relationships between nodes in a network, together 

with their spatial information, is most intuitive with a graphical depiction.  The idea 

of this pattern is to visualize the nature and number of interactions between nodes in a 

network, and any spatial relationship these nodes may have with each other. 

 

Applicability: Use the Network Diagram pattern when you want to 

• visualize the interactions of components at a given point in time  

• visualize spatial relationships between network components 

 

Consequences: The Network Diagram has the following consequences and inherent 

limitations: 

• interactions are only shown for a single point in time 

• large numbers of nodes can make viewing difficult 

 

Implementation: Implementation issues to consider for Network Diagram include: 

• Spatial arrangement of nodes is very important when identifying certain 

network characteristics.  A random layout is the simplest to implement, but 

is generally unsuitable for visualizing the giant component of the network.  

Increasingly sophisticated network layout algorithms can incur a cost in 

processor time (many optimal layouts are likely to be NP-complete). 

 

Known Uses: Boolean network visualization and design, social network visualiza-

tion, neural network visualization and design 

 

Related Patterns: State Space Diagram, Activation Diagram 

 

Sample Code: 

 

n = network, indexed by node 
p = position of each node  
 
clear the screen 
for i = 1 to (number of nodes in n): 
 p[ i] = random position 
 draw sphere at p[ i] 
 
for i = 1 to (number of nodes in n): 
 r = list of nodes regulated by n[ i] 
 for j = 1 to (number of nodes in r): 
  draw arrow from p[ i] to p[ r[ j]] 
 

A C++ source code listing is available at 

http://www.itee.uq.edu.au/~patterns/repository/network-diagram.html 



5. Conclusions 

Patterns are proven solutions to commonly-recurring problems.  Using the extensive 

pattern development experience of the software engineering field, the complex sys-

tems community can capture its collective experience.  Patterns provide a framework 

that asks the right questions to extract and document knowledge gained through ex-

perience, and offer a standardized language with which to discuss this captured 

knowledge.  This paper is an initial step towards a community-driven library of com-

plex systems patterns.  Updates and pattern contributions are available online at 

http://www.itee.uq.edu.au/~patterns/. 
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