
Patterns in Complex Systems Modeling

Janet Wiles and James Watson

ARC Centre for Complex Systems

School of Information Technology and Electrical Engineering

The University of Queensland, Brisbane, 4072, Australia

http://www.itee.uq.edu.au/~patterns/

{j.wiles, j.watson}@itee.uq.edu.au

Abstract. The design, development, and use of complex systems models raises

a unique class of challenges and potential pitfalls, many of which are com-

monly recurring problems. Over time, researchers gain experience in this form

of modeling, choosing algorithms, techniques, and frameworks that improve the

quality, confidence level, and speed of development of their models. This in-

creasing collective experience of complex systems modellers is a resource that

should be captured. Fields such as software engineering and architecture have

benefited from the development of generic solutions to recurring problems,

called patterns. Using pattern development techniques from these fields, in-

sights from communities such as learning and information processing, data

mining, bioinformatics, and agent-based modeling can be identified and cap-

tured. Collections of such ‘pattern languages’ would allow knowledge gained

through experience to be readily accessible to less-experienced practitioners

and to other domains. This paper proposes a methodology for capturing the

wisdom of computational modelers by introducing example visualization pat-

terns, and a pattern classification system for analyzing the relationship between

micro and macro behaviour in complex systems models. We anticipate that a

new field of complex systems patterns will provide an invaluable resource for

both practicing and future generations of modelers.

1. Introduction

While complex systems models are used by a wide variety of often experienced re-

search groups, the development of such models is far from an exact science. The de-

sign of model architecture and algorithms, the choice of hardware and software infra-

structure, and methods for tracking and analyzing results, are just some of the

problems often faced and often re-solved. While each research project and each

simulation within it is unique, there are many underlying commonalities which, once

identified, can save much ‘reinvention of the wheel’.

Established fields such as architecture [1] and software engineering [2] have cap-

tured much of the experience gained by their respected practitioners. These rules of

thumb are known as patterns in architecture and software engineering (e.g. design

patterns [3], process patterns [4]). They record both commonly-recurring problems,

pertaining to any aspect of the work from global structure to specific detail, and their

(To appear in the Proceedings of the Sixth International Conference on Intelligent Data

Engineering and Automated Learning (IDEAL’05))

proven solutions. Libraries of such patterns are more than just collections of a field’s

heuristics. The context in which a solution is appropriate plays a critical part in the

description of a pattern. Context is a recognized part of the background knowledge of

any field, although in most areas it is rarely described as an integral part of a heuristic.

For the field of machine learning, it is well known that no search technique will be

optimal for all tasks, frequently expressed as ‘no free lunch’, however it is still rare

for a new algorithm to be presented with an assessment of the tasks in which it is in-

appropriate. It is important to know in which contexts a heuristic is effective, and the

consequences of their use, such as tradeoffs between accuracy versus time.

Capturing commonly-recurring problems, their contexts and consequences has had

multiple benefits for software engineering and architecture. First, both beginning and

experienced practitioners benefit from a rapidly accessible library of tested ideas, in-

formation about the situations where they should be used and the consequences or

tradeoffs of their use. Second, an appropriate and tested format (building on 40 years

of patterns research in a variety of fields) facilitates the ongoing community devel-

opment of the library. This format provides a shared language of tools and methods

agreed upon by the community, enabling rapid communication. Third, capturing the

wisdom of the field in a practical and effective resource builds confidence in the qual-

ity of systems produced.

The field of complex systems currently lacks this library of experience. Shared li-

braries of algorithms and heuristics exist but they lack the experience of the complex

systems modeler in when to apply them.

Using the patterns approach to capture experience in the field of complex systems

modeling would provide a further benefit. The complex systems community is a

unique collection of researchers from many disparate backgrounds (such as machine

learning, complex adaptive systems, neural networks, gene expression analysis, multi-

agent systems, etc.). However, the fundamental issues studied are common to all,

such as the emergence of macro-level behaviour from micro-level interactions. In-

sights from one branch of complex systems science can often be applied to another

when taken at an appropriate level of abstraction. Patterns can be used to capture

knowledge unique to one branch of the field and effectively communicate these in-

sights to other areas.

2. Software Patterns

The software engineering field has had decades of experience developing, maintain-

ing and using complicated systems, advancing techniques such as problem decompo-

sition, verification, validation and project management. Software engineering pro-

vides extensive experience in pattern development, with patterns spanning the

problem space from global architecture to detailed programming language specific

idioms. More than a heuristic or data structure, a pattern is the solution to a problem

in a specific context, balancing inherent tradeoffs [5]. Software engineering patterns

have defined characteristics including name, intent, motivation, consequences, known

uses, and related patterns [2] (see Section 4).

A good software engineering pattern has the following key characteristics [6]:

• solves a particular problem (not just in principle);

• is a proven solution that has been successfully employed in at least three sig-

nificant scenarios; and

• has a significant human component describing how and when it is useful.

In terms of the patterns development process, the following characteristics have be-

come accepted in the software engineering community [6]:

• a strong focus on proven solutions to recurring problems;

• those writing patterns do not have to be the original inventor of the solution;
• non-anonymous review, where discussions focus on how patterns should be

clarified or improved upon;

• development through discussions in workshops instead of solo presentations;

and

• careful editing, through which the pattern authors can incorporate feedback
gained through workshops and review before presenting the patterns in their

final form.

These characteristics provide a useful guide for the development of patterns in com-

plex systems science.

3. Complex Systems Patterns

As in software engineering, the field of complex systems consists of practitioners ex-

perienced with a wide range of solutions to common problems. Modeling techniques

and implementation frameworks, methods of analysis and visualization, and the most

effective ways of reporting results, are just some of the techniques that form the col-

lective experience of the field. We propose that one of the most effective methods to

capture and communicate complex systems knowledge is the proven technique of pat-

tern development from software design.

Patterns from the complex systems community can be grouped into two classes.

The first is collections of proven solutions to commonly recurring problems that occur

in the development and use of complex systems models. Examples in this class of

patterns include hardware and software platforms, model architectures and abstrac-

tions, and analysis and visualization techniques. The second source of potential pat-

terns are the insights generated by the complex systems models themselves. Emer-

gent robustness, evolvability, efficient connectivity, and modular design are some of

the characteristics found in complex systems that can inform the development of solu-

tions to certain problems, and communicate insights from one class of models, such as

agent-based systems, to another, such as genetic regulatory networks.

Initial places to search for such classes of patterns include the visualization of net-

work structure and dynamics such as expression patterns [7], [8], metrics for connec-

tivity, diameter, and cluster coherency of networks [9], [10], and micro and macro

scale, temporal and spatial structures [11], [12].

Patterns vary in their level of abstraction and granularity, and consequently there

needs to be a way to classify them [2]. The micro and macro level characteristics of

complex systems models can be at the level of structure, dynamics, or function. The

structural level focuses on the static relationships between model entities, for exam-

ple, a network of agent relationships or gene connectivity. The dynamic level is con-

cerned with the interactions between these components, for example, a diagram of

gene activations or the state space. The functional level focuses on the entire complex

system functioning within an environment (e.g., a phenotype based on underlying

component interactions placed within an evolutionary algorithm). A preliminary set

of complex systems patterns, useful for modeling Boolean networks, and their classi-

fications, is summarized in Table 1.

Table 1. Examples of visualizations that can inform development and use of Boolean network

models

Targeted Complex Systems Features

Pattern Structure Dynamics Function
Micro

Mechanics

Macro

Behaviours
......

Network Diagram � �

Activation Diagram � � �

State Space Diagram � �

......

4. Example Patterns

Consistent with best practice, refinements can be found at

http://www.itee.uq.edu.au/~patterns/repository/

4.1 Activation Diagram

One commonly-recurring problem in genetic regulatory network modeling is the

visualization of system behaviour, where interesting behaviours span multiple levels

in time and space. To provide a concrete feel for the nature and scope of a complex

system pattern, this section illustrates a prototype pattern which solves this problem.

Name: Activation Diagram (Classification: Dynamics, Micro-Mechanics, Macro Be-

haviours)

Intent: Visualize micro level activation of components over time to see macro level

characteristics.

Also known as: Gene expression diagram, gene activation diagram, expression pat-

tern, activation signature

Motivation: Understanding the effects over time of interactions between large num-

bers of nodes in a network can be difficult and time-consuming. Inferring macro-

level classes of behaviour is easiest when the history of system-wide activations are

presented as a single diagram. The idea of this pattern is to provide a visualization of

node histories for a single initial condition, allowing macro-level features such as sta-

ble, cyclic, or chaotic behaviour to be identified, and characteristics such as

the length of transient periods to be measured.

Applicability: Use the Activation Diagram pattern when you want to:

• visualize the characteristics of component activations over time when compo-

nents have binary or real-valued states;

• visualize characteristics of macro level behaviour such as ordered, cyclic, or

chaotic activity;

• visualize both the initial transient dynamics and the longer term behaviour;

• assess the life cycle of macro level behaviours (such as the number of steps be-

fore a network settles into a certain state); or

• (variation) manually investigate robustness of macro-level behaviour

Example Visualization:

Fig. 1. Activation diagram. Time is shown along the x axis, and each component is positioned

along the y axis. Active components are denoted by dark shading. This diagram shows the

component activations falling into a cyclic state after a short transient period.

Consequences: The Activation Diagram has the following consequences and inherent

limitations:

• it provides a clean visualization of the dynamics from a single starting state but

the inherent limitation is that only a single starting state and trajectory is shown

per diagram;

• it requires access to the values of all components for each time step;

• large numbers of components can make viewing difficult;

• very long cycles can appear similar to chaotic trajectories;

• the two-dimensional representation maps time into space, consequently spatial

information is lost (e.g., in random Boolean networks, neural networks); this can

be mitigated by using the Activation Diagram pattern together with the Network

Diagram pattern; and

• spatial information is preserved if a one-dimensional representation is used (e.g.,

cellular automata)

Implementation: The Activation Diagram has the following important implementa-

tion variations:

• time can be expressed along the x or y axis; and

• one-dimensional interactions (e.g., cellular automata) can be visualized by or-

dering nodes according to their interactions

Known uses: Gene expression [13], random Boolean networks, cellular automata,

neural network dynamics.

Related patterns: State Space Diagram, Network Diagram

Sample Code:

This example visualizes the expression pattern of a Boolean network of gene regula-

tion. A C++ source code listing is available at

http://www.itee.uq.edu.au/~patterns/repository/activation-diagram.html

e = expression data, indexed by [step number][gene nu mber]
s = number of steps in e
g = number of genes in e

if (s > 0) and (g > 0):
 clear the screen
 xdist = screen-width / s
 ydist = screen-height / g
 xgap = 0.12 * xdist
 ygap = 0.12 * ydist

 x = 0 /* where 0 is leftmost screen coordinate */
 for i = 1 to s:
 y = 0 /* where 0 is topmost screen coordinate */
 for j = 1 to g:
 if expression_data[i][j] is activated:
 x1 = x + xgap
 y1 = y + ygap
 x2 = x + xdist – xgap
 y2 = y + ydist – ygap
 draw_rectangle(x1, y1, x2, y2)
 y = y + ydist
 x = x + xdist

4.2 Network Diagram

Name and Classification: Network Diagram (Structure, Micro Mechanics)

Intent: Visualize micro-level interactions of components at a given point in time

Also Known As: Graph

Motivation: Understanding the relationships between nodes in a network, together

with their spatial information, is most intuitive with a graphical depiction. The idea

of this pattern is to visualize the nature and number of interactions between nodes in a

network, and any spatial relationship these nodes may have with each other.

Applicability: Use the Network Diagram pattern when you want to

• visualize the interactions of components at a given point in time

• visualize spatial relationships between network components

Consequences: The Network Diagram has the following consequences and inherent

limitations:

• interactions are only shown for a single point in time

• large numbers of nodes can make viewing difficult

Implementation: Implementation issues to consider for Network Diagram include:

• Spatial arrangement of nodes is very important when identifying certain

network characteristics. A random layout is the simplest to implement, but

is generally unsuitable for visualizing the giant component of the network.

Increasingly sophisticated network layout algorithms can incur a cost in

processor time (many optimal layouts are likely to be NP-complete).

Known Uses: Boolean network visualization and design, social network visualiza-

tion, neural network visualization and design

Related Patterns: State Space Diagram, Activation Diagram

Sample Code:

n = network, indexed by node
p = position of each node

clear the screen
for i = 1 to (number of nodes in n):
 p[i] = random position
 draw sphere at p[i]

for i = 1 to (number of nodes in n):
 r = list of nodes regulated by n[i]
 for j = 1 to (number of nodes in r):
 draw arrow from p[i] to p[r[j]]

A C++ source code listing is available at

http://www.itee.uq.edu.au/~patterns/repository/network-diagram.html

5. Conclusions

Patterns are proven solutions to commonly-recurring problems. Using the extensive

pattern development experience of the software engineering field, the complex sys-

tems community can capture its collective experience. Patterns provide a framework

that asks the right questions to extract and document knowledge gained through ex-

perience, and offer a standardized language with which to discuss this captured

knowledge. This paper is an initial step towards a community-driven library of com-

plex systems patterns. Updates and pattern contributions are available online at

http://www.itee.uq.edu.au/~patterns/.

Acknowledgments

This work was funded by the ARC Centre for Complex Systems and an Australian

Research Council grant to the first author.

References

1. Alexander, C., et al., A Pattern Language. 1977, New York: Oxford University Press.

2. Gamma, E., et al., Design Patterns: Elements of Reusable Object-Oriented Software. Addi-

son-Wesley Professional Computing Series. 1994: Addison-Wesley.

3. Srinivasan, S., Design patterns in object-oriented frameworks. Computer, 1999. 32(2): p.

24-32.

4. Moore, J., et al. Combining and adapting process patterns for flexible workflow. in 11th In-

ternational Workshop on Database and Expert Systems Applications. 2000.

5. Coplien, J.O., Software design patterns: common questions and answers, in The Patterns

Handbook: Techniques, Strategies, and Applications, L. Rising, Editor. 1998, Cambridge

University Press, New York. p. 311-320.

6. Appleton, B., Patterns and software: essential concepts and terminology. 2000.

http://www.cmcrossroads.com/bradapp/docs/patterns-intro.html
7. Wuensche, A. Genomic regulation modeled as a network with basins of attraction. in Pa-

cific Symposium on Biocomputing '98. 1998. Singapore: World Scientific.

8. Solé, R.V., P. Fernández, and S.A. Kauffman, Adaptive walks in a gene network model of

morphogenesis: insights into the Cambrian explosion. International Journal of Developmen-

tal Biology, 2003. 47(7/8): p. 685-693.

9. Strogatz, S.H., Exploring complex networks. Nature, 2001. 410: p. 268-276.

10. Newman, M.E.J., The structure and function of complex networks. SIAM Review, 2003.

45(2): p. 167-256.

11. Raff, R.A., Evo-Devo: The evolution of a new discipline. Nature Reviews Genetics, 2000.

1(1): p. 74-79.

12. Hasty, J., et al., Computational studies of gene regulatory networks: In numero molecular

biology. Nature Reviews Genetics, 2001. 2(4): p. 268-279.

13. Reil, T. Dynamics of gene expression in an artificial genome - implications for biological

and artificial ontogeny. in The 5th European Conference on Artificial Life. 1999: Springer

Verlag.

